Advertisements
Advertisements
प्रश्न
Solve the following equation for x:
`2^(3x-7)=256`
उत्तर
`2^(3x-7)=256`
`rArr2^(3x-7)=2^8`
⇒ 3x - 7 = 8
⇒ 3x = 8 + 7
⇒ 3x = 15
⇒ x = 15/3
⇒ x = 5
APPEARS IN
संबंधित प्रश्न
Assuming that x, y, z are positive real numbers, simplify the following:
`(x^((-2)/3)y^((-1)/2))^2`
Simplify:
`((5^-1xx7^2)/(5^2xx7^-4))^(7/2)xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)`
Prove that:
`(3^-3xx6^2xxsqrt98)/(5^2xxroot3(1/25)xx(15)^(-4/3)xx3^(1/3))=28sqrt2`
Find the value of x in the following:
`5^(2x+3)=1`
If 3x-1 = 9 and 4y+2 = 64, what is the value of \[\frac{x}{y}\] ?
The value of \[\left\{ 2 - 3 (2 - 3 )^3 \right\}^3\] is
If \[\sqrt{2^n} = 1024,\] then \[{3^2}^\left( \frac{n}{4} - 4 \right) =\]
If \[\sqrt{2} = 1 . 4142\] then \[\sqrt{\frac{\sqrt{2} - 1}{\sqrt{2} + 1}}\] is equal to
Find:-
`32^(1/5)`
Simplify:-
`(1/3^3)^7`