Advertisements
Advertisements
प्रश्न
Solve the following equations for x:
`2^(2x)-2^(x+3)+2^4=0`
उत्तर
`2^(2x)-2^(x+3)+2^4=0`
`rArr(2^x)^2-(2^xxx2^3)+(2^2)^2=0`
`rArr(2^x)^2-2xx2^xxx2^2+(2^2)^2=0`
`rArr(2^x-2^2)^2=0`
⇒ 2x - 22 = 0
⇒ 2x = 22
⇒ x = 2
APPEARS IN
संबंधित प्रश्न
Simplify:-
`2^(2/3). 2^(1/5)`
Prove that:
`(1/4)^-2-3xx8^(2/3)xx4^0+(9/16)^(-1/2)=16/3`
Prove that:
`((0.6)^0-(0.1)^-1)/((3/8)^-1(3/2)^3+((-1)/3)^-1)=(-3)/2`
If `x=2^(1/3)+2^(2/3),` Show that x3 - 6x = 6
If (x − 1)3 = 8, What is the value of (x + 1)2 ?
Which one of the following is not equal to \[\left( \sqrt[3]{8} \right)^{- 1/2} ?\]
If g = `t^(2/3) + 4t^(-1/2)`, what is the value of g when t = 64?
If 10x = 64, what is the value of \[{10}^\frac{x}{2} + 1 ?\]
\[\frac{5^{n + 2} - 6 \times 5^{n + 1}}{13 \times 5^n - 2 \times 5^{n + 1}}\] is equal to
Simplify:
`11^(1/2)/11^(1/4)`