Advertisements
Advertisements
प्रश्न
Simplify:
`11^(1/2)/11^(1/4)`
उत्तर
We can write the given expression as follows
⇒ `11^(1/2)/11^(1/4)`
= `11^(1/2 - 1/4)`
= `11^((2-1)/4)`
On simplifying,
= `11^(1/4)`
APPEARS IN
संबंधित प्रश्न
Prove that:
`(x^a/x^b)^cxx(x^b/x^c)^axx(x^c/x^a)^b=1`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrt(x^-3))^5`
Simplify:
`root3((343)^-2)`
Prove that:
`(2^(1/2)xx3^(1/3)xx4^(1/4))/(10^(-1/5)xx5^(3/5))div(3^(4/3)xx5^(-7/5))/(4^(-3/5)xx6)=10`
Show that:
`1/(1+x^(a-b))+1/(1+x^(b-a))=1`
Find the value of x in the following:
`(root3 4)^(2x+1/2)=1/32`
Solve the following equation:
`4^(2x)=(root3 16)^(-6/y)=(sqrt8)^2`
If `x = a^(m+n),` `y=a^(n+l)` and `z=a^(l+m),` prove that `x^my^nz^l=x^ny^lz^m`
The square root of 64 divided by the cube root of 64 is
If a, b, c are positive real numbers, then \[\sqrt{a^{- 1} b} \times \sqrt{b^{- 1} c} \times \sqrt{c^{- 1} a}\] is equal to