Advertisements
Advertisements
प्रश्न
Simplify:
`7^(1/2) . 8^(1/2)`
उत्तर
We can write the given expression as follows:
⇒ `7^(1/2) xx 8^(1/2) = (7 xx 8)^(1/2)`
To simplify
∴ `7^(1/2) xx 8^(1/2) = 56^(1/2)`
APPEARS IN
संबंधित प्रश्न
Solve the following equation for x:
`7^(2x+3)=1`
Given `4725=3^a5^b7^c,` find
(i) the integral values of a, b and c
(ii) the value of `2^-a3^b7^c`
Assuming that x, y, z are positive real numbers, simplify the following:
`(x^((-2)/3)y^((-1)/2))^2`
Simplify:
`(0.001)^(1/3)`
Prove that:
`9^(3/2)-3xx5^0-(1/81)^(-1/2)=15`
Show that:
`(x^(a-b))^(a+b)(x^(b-c))^(b+c)(x^(c-a))^(c+a)=1`
If a and b are distinct primes such that `root3 (a^6b^-4)=a^xb^(2y),` find x and y.
If a and b are different positive primes such that
`(a+b)^-1(a^-1+b^-1)=a^xb^y,` find x + y + 2.
Write \[\left( 625 \right)^{- 1/4}\] in decimal form.
If \[\sqrt{2^n} = 1024,\] then \[{3^2}^\left( \frac{n}{4} - 4 \right) =\]