Advertisements
Advertisements
प्रश्न
Simplify:
`7^(1/2) . 8^(1/2)`
उत्तर
We can write the given expression as follows:
⇒ `7^(1/2) xx 8^(1/2) = (7 xx 8)^(1/2)`
To simplify
∴ `7^(1/2) xx 8^(1/2) = 56^(1/2)`
APPEARS IN
संबंधित प्रश्न
If abc = 1, show that `1/(1+a+b^-1)+1/(1+b+c^-1)+1/(1+c+a^-1)=1`
Solve the following equations for x:
`2^(2x)-2^(x+3)+2^4=0`
Show that:
`{(x^(a-a^-1))^(1/(a-1))}^(a/(a+1))=x`
Simplify:
`(x^(a+b)/x^c)^(a-b)(x^(b+c)/x^a)^(b-c)(x^(c+a)/x^b)^(c-a)`
Simplify \[\left[ \left\{ \left( 625 \right)^{- 1/2} \right\}^{- 1/4} \right]^2\]
When simplified \[\left( - \frac{1}{27} \right)^{- 2/3}\] is
The value of 64-1/3 (641/3-642/3), is
If \[\frac{2^{m + n}}{2^{n - m}} = 16\], \[\frac{3^p}{3^n} = 81\] and \[a = 2^{1/10}\],than \[\frac{a^{2m + n - p}}{( a^{m - 2n + 2p} )^{- 1}} =\]
The simplest rationalising factor of \[2\sqrt{5}-\]\[\sqrt{3}\] is
The value of \[\sqrt{5 + 2\sqrt{6}}\] is