Advertisements
Advertisements
प्रश्न
Show that:
`{(x^(a-a^-1))^(1/(a-1))}^(a/(a+1))=x`
उत्तर
`{(x^(a-a^-1))^(1/(a-1))}^(a/(a+1))=x`
LHS = `{(x^(a-a^-1))^(1/(a-1))}^(a/(a+1))`
`={(x^(a-1/a))^(1/(a-1)xxa/(a+1))}`
`={x^((a^2-1)/a)}^(a/(a^2-1))`
`=x^((a^2-1)/axxa/(a^2-1))`
`=x^1`
`= x`
= RHS
APPEARS IN
संबंधित प्रश्न
If abc = 1, show that `1/(1+a+b^-1)+1/(1+b+c^-1)+1/(1+c+a^-1)=1`
Solve the following equations for x:
`2^(2x)-2^(x+3)+2^4=0`
Simplify:
`(0.001)^(1/3)`
Prove that:
`(1/4)^-2-3xx8^(2/3)xx4^0+(9/16)^(-1/2)=16/3`
If `x=2^(1/3)+2^(2/3),` Show that x3 - 6x = 6
If `5^(3x)=125` and `10^y=0.001,` find x and y.
If a, m, n are positive ingegers, then \[\left\{ \sqrt[m]{\sqrt[n]{a}} \right\}^{mn}\] is equal to
The simplest rationalising factor of \[2\sqrt{5}-\]\[\sqrt{3}\] is
If \[x = 7 + 4\sqrt{3}\] and xy =1, then \[\frac{1}{x^2} + \frac{1}{y^2} =\]
If \[\sqrt{13 - a\sqrt{10}} = \sqrt{8} + \sqrt{5}, \text { then a } =\]