Advertisements
Advertisements
प्रश्न
If `x=2^(1/3)+2^(2/3),` Show that x3 - 6x = 6
उत्तर
x3 - 6x = 6
`x=2^(1/3)+2^(2/3)`
Putting cube on both the sides, we get,
`x^3=(2^(1/3)+2^(2/3))^3`
As we know, `(a+b)^3=a^3+b^3+3ab(a+b)`
`x^3=(2^(1/3))^3+(2^(2/3))^3+3(2^(1/3))(2^(2/3))(2^(1/3)+2^(2/3))`
`x^3=(2^(1/3))^3+(2^(2/3))^3+3(2^(1/3+2/3))(x)`
`x^3=(2^(3/3))+(2^(6/3))+3(2)(x)`
`x^3=2^1+2^2+3(2)(x)`
`x^3=2+4+6x`
`x^3=6+6x`
`x^3-6x=6`
APPEARS IN
संबंधित प्रश्न
Simplify the following
`(2x^-2y^3)^3`
Prove that:
`1/(1+x^(b-a)+x^(c-a))+1/(1+x^(a-b)+x^(c-b))+1/(1+x^(b-c)+x^(a-c))=1`
Simplify the following:
`(6(8)^(n+1)+16(2)^(3n-2))/(10(2)^(3n+1)-7(8)^n)`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrtx)^((-2)/3)sqrt(y^4)divsqrt(xy^((-1)/2))`
Assuming that x, y, z are positive real numbers, simplify the following:
`(x^-4/y^-10)^(5/4)`
Simplify:
`(0.001)^(1/3)`
Show that:
`[{x^(a(a-b))/x^(a(a+b))}div{x^(b(b-a))/x^(b(b+a))}]^(a+b)=1`
If `3^(4x) = (81)^-1` and `10^(1/y)=0.0001,` find the value of ` 2^(-x+4y)`.
If (x − 1)3 = 8, What is the value of (x + 1)2 ?
If \[x + \sqrt{15} = 4,\] then \[x + \frac{1}{x}\] =