Advertisements
Advertisements
प्रश्न
If `3^(4x) = (81)^-1` and `10^(1/y)=0.0001,` find the value of ` 2^(-x+4y)`.
उत्तर
It is given that `3^(4x) = (81)^-1` and `10^(1/y)=0.0001`
Now,
`3^(4x) = (81)^-1`
`rArr3^(4x)=(3^4)^(-1)`
`rArr(3^x)^4=(3^-1)^4`
`rArrx=-1`
And,
`10^(1/y)=0.0001`
`rArr10^(1/y)=1/10000`
`rArr10^(1/y)=(1/10)^4`
`rArr10^(1/y)=(10)^-4`
`rArr1/y=-4`
`rArry=-1/4`
Therefore, the value of `2^(-x+4y)` is `2^(1+4(-1/4))=2^0=1`.
APPEARS IN
संबंधित प्रश्न
Simplify the following
`3(a^4b^3)^10xx5(a^2b^2)^3`
Simplify the following
`(4ab^2(-5ab^3))/(10a^2b^2)`
Solve the following equations for x:
`3^(2x+4)+1=2.3^(x+2)`
Show that:
`{(x^(a-a^-1))^(1/(a-1))}^(a/(a+1))=x`
If `27^x=9/3^x,` find x.
Find the value of x in the following:
`(3/5)^x(5/3)^(2x)=125/27`
If `5^(3x)=125` and `10^y=0.001,` find x and y.
State the product law of exponents.
Write the value of \[\left\{ 5( 8^{1/3} + {27}^{1/3} )^3 \right\}^{1/4} . \]
The simplest rationalising factor of \[\sqrt{3} + \sqrt{5}\] is ______.