Advertisements
Advertisements
प्रश्न
Solve the following equations for x:
`3^(2x+4)+1=2.3^(x+2)`
उत्तर
`3^(2x+4)+1=2.3^(x+2)`
`rArr(3^(x+2))^2-2.3^(x+2)+1=0`
`rArr(3^(x+2)-1)^2=0`
`rArr3^(x+2)-1=0`
`rArr3^(x+2)=1`
`rArr3^(x+2)=3^0`
⇒ x + 2 = 0
⇒ x = -2
APPEARS IN
संबंधित प्रश्न
Simplify the following
`3(a^4b^3)^10xx5(a^2b^2)^3`
Simplify the following
`(4ab^2(-5ab^3))/(10a^2b^2)`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrt2/sqrt3)^5(6/7)^2`
Simplify:
`(sqrt2/5)^8div(sqrt2/5)^13`
If 1176 = `2^axx3^bxx7^c,` find the values of a, b and c. Hence, compute the value of `2^axx3^bxx7^-c` as a fraction.
Simplify \[\left[ \left\{ \left( 625 \right)^{- 1/2} \right\}^{- 1/4} \right]^2\]
The value of m for which \[\left[ \left\{ \left( \frac{1}{7^2} \right)^{- 2} \right\}^{- 1/3} \right]^{1/4} = 7^m ,\] is
The value of \[\sqrt{3 - 2\sqrt{2}}\] is
Find:-
`125^(1/3)`
Find:-
`125^((-1)/3)`