Advertisements
Advertisements
Question
Solve the following equations for x:
`3^(2x+4)+1=2.3^(x+2)`
Solution
`3^(2x+4)+1=2.3^(x+2)`
`rArr(3^(x+2))^2-2.3^(x+2)+1=0`
`rArr(3^(x+2)-1)^2=0`
`rArr3^(x+2)-1=0`
`rArr3^(x+2)=1`
`rArr3^(x+2)=3^0`
⇒ x + 2 = 0
⇒ x = -2
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
Simplify the following
`((4xx10^7)(6xx10^-5))/(8xx10^4)`
Solve the following equation for x:
`4^(2x)=1/32`
Show that:
`(3^a/3^b)^(a+b)(3^b/3^c)^(b+c)(3^c/3^a)^(c+a)=1`
Find the value of x in the following:
`2^(5x)div2x=root5(2^20)`
Find the value of x in the following:
`2^(x-7)xx5^(x-4)=1250`
(256)0.16 × (256)0.09
\[\frac{5^{n + 2} - 6 \times 5^{n + 1}}{13 \times 5^n - 2 \times 5^{n + 1}}\] is equal to
If \[x = 7 + 4\sqrt{3}\] and xy =1, then \[\frac{1}{x^2} + \frac{1}{y^2} =\]
Find:-
`125^((-1)/3)`
Simplify:
`11^(1/2)/11^(1/4)`