Advertisements
Advertisements
Question
(256)0.16 × (256)0.09
Options
4
16
64
256.25
Solution
We have to find the value of `(256)^0.16 xx (256)^0.09`So,
By using law of rational exponents
`a^m xx a^n = a^(m+n)` we get
`(256)^0.16 xx (256)^0.09 = (256)^0.16 xx (256)^0.09`
=`(256)^(0.16+0.09)`
= `256^(0.25)`
=`(256)^(25/100)`
`(256)^0.16 xx (256)^0.09 = 2^(8 xx 25/100)`
= `2^(8 xx 25/100)`
` = 2^(8 xx 1/4)`
` = 2^(8 xx 1/4)`
= 4
The value of `(256)^0.16 xx (256)^0.09 `is 4
APPEARS IN
RELATED QUESTIONS
Simplify:-
`2^(2/3). 2^(1/5)`
Simplify the following
`(4ab^2(-5ab^3))/(10a^2b^2)`
Simplify:
`root5((32)^-3)`
Prove that:
`(64/125)^(-2/3)+1/(256/625)^(1/4)+(sqrt25/root3 64)=65/16`
Find the value of x in the following:
`5^(2x+3)=1`
If a and b are distinct primes such that `root3 (a^6b^-4)=a^xb^(2y),` find x and y.
If (x − 1)3 = 8, What is the value of (x + 1)2 ?
If x is a positive real number and x2 = 2, then x3 =
If \[\frac{5 - \sqrt{3}}{2 + \sqrt{3}} = x + y\sqrt{3}\] , then
If \[\sqrt{2} = 1 . 4142\] then \[\sqrt{\frac{\sqrt{2} - 1}{\sqrt{2} + 1}}\] is equal to