Advertisements
Advertisements
Question
The value of \[\left\{ \left( 23 + 2^2 \right)^{2/3} + (140 - 19 )^{1/2} \right\}^2 ,\] is
Options
196
289
324
400
Solution
We have to find the value of `{(23+2^2)^(2/3)+ (140- 19 )^(1/2) }^2`
`{(23+2^2)^(2/3)+ (140- 19 )^(1/2) }^2 = {(23+4)^(2/3)+ (121)^(1/2) }^2`
= `{(27)^(2/3)+ (121)^(1/2) }^2`
`={(3^3)^(2/3)+ (11^2)^(1/2) }^2`
`{(23+2^2)^(2/3)+ (140- 19 )^(1/2) }^2`= ` {3^(3 xx2/3) +11
^( 2xx 1/2)}^2`
` = {3^(3 xx2/3) +11^( 2xx 1/2)}^2`
= `{3^2 + 11}^2`
`⇒ {(23+2^2)^(2/3)+ (140- 19 )^(1/2) }^2 = {9+11}^2`
By using the identity `(a+b)^2 = a^2 +2ab +b^2` we get,
`= 9 xx 9 +2 xx 9 xx 11 + 11 xx 11`
`= 81 +198 +121`
`= 400`
APPEARS IN
RELATED QUESTIONS
Find:-
`9^(3/2)`
Simplify the following
`3(a^4b^3)^10xx5(a^2b^2)^3`
Simplify:
`root3((343)^-2)`
Show that:
`(a^(x+1)/a^(y+1))^(x+y)(a^(y+2)/a^(z+2))^(y+z)(a^(z+3)/a^(x+3))^(z+x)=1`
If a and b are different positive primes such that
`(a+b)^-1(a^-1+b^-1)=a^xb^y,` find x + y + 2.
If \[\sqrt{5^n} = 125\] then `5nsqrt64`=
If o <y <x, which statement must be true?
The simplest rationalising factor of \[\sqrt[3]{500}\] is
If \[\frac{5 - \sqrt{3}}{2 + \sqrt{3}} = x + y\sqrt{3}\] , then
If \[\sqrt{13 - a\sqrt{10}} = \sqrt{8} + \sqrt{5}, \text { then a } =\]