English

Show That: `(A^(X+1)/A^(Y+1))^(X+Y)(A^(Y+2)/A^(Z+2))^(Y+Z)(A^(Z+3)/A^(X+3))^(Z+X)=1` - Mathematics

Advertisements
Advertisements

Question

Show that:

`(a^(x+1)/a^(y+1))^(x+y)(a^(y+2)/a^(z+2))^(y+z)(a^(z+3)/a^(x+3))^(z+x)=1`

Solution

`(a^(x+1)/a^(y+1))^(x+y)(a^(y+2)/a^(z+2))^(y+z)(a^(z+3)/a^(x+3))^(z+x)=1`

LHS = `(a^(x+1)/a^(y+1))^(x+y)(a^(y+2)/a^(z+2))^(y+z)(a^(z+3)/a^(x+3))^(z+x)`

`=(a^(x+1-y-1))^(x+y)(a^(y+2-z-2))^(y+z)(a^(z+3-x-3))^(z+x)`

`=(a^(x-y))^(x+y)(a^(y-z))^(y+z)(a^(z-x))^(z+x)`

`=(a^((x-y)(x+y)))(a^((y-z)(y+z)))(a^((z-x)(z+x)))`

`=(a^(x^2-y^2))(a^(y^2-z^2))(a^(z^2-x^2))`

`=a^(x^2-y^2+y^2-z^2+z^2-x^2)`

`=a^0`

= 1

= RHS

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Exponents of Real Numbers - Exercise 2.2 [Page 25]

APPEARS IN

RD Sharma Mathematics [English] Class 9
Chapter 2 Exponents of Real Numbers
Exercise 2.2 | Q 4.7 | Page 25

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×