Advertisements
Advertisements
Question
Show that:
`(a^(x+1)/a^(y+1))^(x+y)(a^(y+2)/a^(z+2))^(y+z)(a^(z+3)/a^(x+3))^(z+x)=1`
Solution
`(a^(x+1)/a^(y+1))^(x+y)(a^(y+2)/a^(z+2))^(y+z)(a^(z+3)/a^(x+3))^(z+x)=1`
LHS = `(a^(x+1)/a^(y+1))^(x+y)(a^(y+2)/a^(z+2))^(y+z)(a^(z+3)/a^(x+3))^(z+x)`
`=(a^(x+1-y-1))^(x+y)(a^(y+2-z-2))^(y+z)(a^(z+3-x-3))^(z+x)`
`=(a^(x-y))^(x+y)(a^(y-z))^(y+z)(a^(z-x))^(z+x)`
`=(a^((x-y)(x+y)))(a^((y-z)(y+z)))(a^((z-x)(z+x)))`
`=(a^(x^2-y^2))(a^(y^2-z^2))(a^(z^2-x^2))`
`=a^(x^2-y^2+y^2-z^2+z^2-x^2)`
`=a^0`
= 1
= RHS
APPEARS IN
RELATED QUESTIONS
Simplify:
`(16^(-1/5))^(5/2)`
Simplify:
`root5((32)^-3)`
Prove that:
`(64/125)^(-2/3)+1/(256/625)^(1/4)+(sqrt25/root3 64)=65/16`
If 3x = 5y = (75)z, show that `z=(xy)/(2x+y)`
Solve the following equation:
`3^(x-1)xx5^(2y-3)=225`
Simplify:
`(x^(a+b)/x^c)^(a-b)(x^(b+c)/x^a)^(b-c)(x^(c+a)/x^b)^(c-a)`
Simplify:
`root(lm)(x^l/x^m)xxroot(mn)(x^m/x^n)xxroot(nl)(x^n/x^l)`
If 24 × 42 =16x, then find the value of x.
The simplest rationalising factor of \[\sqrt{3} + \sqrt{5}\] is ______.
If \[x = \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}}\] and \[y = \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}}\] then x + y +xy=