Advertisements
Advertisements
Question
Simplify:
`(x^(a+b)/x^c)^(a-b)(x^(b+c)/x^a)^(b-c)(x^(c+a)/x^b)^(c-a)`
Solution
`(x^(a+b)/x^c)^(a-b)(x^(b+c)/x^a)^(b-c)(x^(c+a)/x^b)^(c-a)`
`=(x^((a+b)(a-b))/x^(c(a-b)))(x^((b+c)(b-c))/x^(a(b-c)))(x^((c+a)(c-a))/x^(b(c-a)))`
`=(x^(a^2-b^2)/x^(ca-bc))(x^(b^2-c^2)/x^(ab-ac))(x^(c^2-a^2)/x^(bc-ab))`
`=x^(a^2-b^2+b^2-c^2+c^2-a^2)/x^(ca-bc+ab-ac+bc-ab)`
`=x^0/x^0`
= 1
APPEARS IN
RELATED QUESTIONS
If a = 3 and b = -2, find the values of :
aa + bb
Assuming that x, y, z are positive real numbers, simplify the following:
`(x^((-2)/3)y^((-1)/2))^2`
Assuming that x, y, z are positive real numbers, simplify the following:
`root5(243x^10y^5z^10)`
Show that:
`{(x^(a-a^-1))^(1/(a-1))}^(a/(a+1))=x`
If `27^x=9/3^x,` find x.
Find the value of x in the following:
`(sqrt(3/5))^(x+1)=125/27`
If 3x-1 = 9 and 4y+2 = 64, what is the value of \[\frac{x}{y}\] ?
The seventh root of x divided by the eighth root of x is
If \[x = \sqrt{6} + \sqrt{5}\],then \[x^2 + \frac{1}{x^2} - 2 =\]
Find:-
`16^(3/4)`