Advertisements
Advertisements
Question
If \[x = \sqrt{6} + \sqrt{5}\],then \[x^2 + \frac{1}{x^2} - 2 =\]
Options
\[2\sqrt{6}\]
\[2\sqrt{5}\]
24
20
Solution
Given that `x = sqrt6 +sqrt5 ` .Hence `1/x`is given as
`1/x = 1/(sqrt6+sqrt5)`.We need to find `x^2 +1/x^2 - 2`
We know that rationalization factor for `sqrt6 +sqrt5` is`sqrt6 -sqrt5`. We will multiply numerator and denominator of the given expression `1/(sqrt6+sqrt5)`by `sqrt6 -sqrt5`, to get
`1/x = 1/(sqrt6+sqrt5) xx (sqrt6-sqrt5)/(sqrt6-sqrt5) `
` = (sqrt6-sqrt5)/((sqrt6)^2 - (sqrt5)^2)`
` = (sqrt6 - sqrt5)/(6-5)`
` = sqrt6 - sqrt5.`
We know that `(x-1/x)^2 = x^2 + 1/x^2 - 2 ` therefore,
`x^2 + 1/x^2 - 2 = (x-1/x)^2 `
` = (sqrt 6 + sqrt5 - (sqrt6 - sqrt5))^2`
` = (sqrt6 + sqrt5 - sqrt6 +sqrt5)^2`
` = (2sqrt5)^2`
`= 20`
APPEARS IN
RELATED QUESTIONS
Prove that:
`(a^-1+b^-1)^-1=(ab)/(a+b)`
Show that:
`{(x^(a-a^-1))^(1/(a-1))}^(a/(a+1))=x`
Write \[\left( 625 \right)^{- 1/4}\] in decimal form.
Write the value of \[\sqrt[3]{7} \times \sqrt[3]{49} .\]
Write \[\left( \frac{1}{9} \right)^{- 1/2} \times (64 )^{- 1/3}\] as a rational number.
For any positive real number x, write the value of \[\left\{ \left( x^a \right)^b \right\}^\frac{1}{ab} \left\{ \left( x^b \right)^c \right\}^\frac{1}{bc} \left\{ \left( x^c \right)^a \right\}^\frac{1}{ca}\]
When simplified \[( x^{- 1} + y^{- 1} )^{- 1}\] is equal to
The simplest rationalising factor of \[\sqrt{3} + \sqrt{5}\] is ______.
If \[x = 7 + 4\sqrt{3}\] and xy =1, then \[\frac{1}{x^2} + \frac{1}{y^2} =\]
Find:-
`16^(3/4)`