Advertisements
Advertisements
Question
The positive square root of \[7 + \sqrt{48}\] is
Options
\[7 + 2\sqrt{3}\]
\[7 + \sqrt{3}\]
\[ \sqrt{3}+2\]
\[3 + \sqrt{2}\]
Solution
Given that:`7 +sqrt48`.To find square root of the given expression we need to rewrite the expression in the form `a^2 +b^2 +2ab = (a+b)^2`
`7 +sqrt48 = 3+4+2xx2xxsqrt3`
` = (sqrt3)^2 + (2)^2 +2 xx 2xx xxsqrt3`
`= (sqrt3 + 2 )^2`
Hence the square root of the given expression is `sqrt3+2`
APPEARS IN
RELATED QUESTIONS
Prove that:
`(x^a/x^b)^(a^2+ab+b^2)xx(x^b/x^c)^(b^2+bc+c^2)xx(x^c/x^a)^(c^2+ca+a^2)=1`
Assuming that x, y, z are positive real numbers, simplify the following:
`(x^((-2)/3)y^((-1)/2))^2`
If `27^x=9/3^x,` find x.
State the quotient law of exponents.
Which one of the following is not equal to \[\left( \frac{100}{9} \right)^{- 3/2}\]?
If \[\frac{3^{2x - 8}}{225} = \frac{5^3}{5^x},\] then x =
If x= \[\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}\] and y = \[\frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}\] , then x2 + y +y2 =
If x = \[\sqrt[3]{2 + \sqrt{3}}\] , then \[x^3 + \frac{1}{x^3} =\]
If \[x = \sqrt{6} + \sqrt{5}\],then \[x^2 + \frac{1}{x^2} - 2 =\]
Which of the following is equal to x?