Advertisements
Advertisements
Question
If x = \[\sqrt[3]{2 + \sqrt{3}}\] , then \[x^3 + \frac{1}{x^3} =\]
Options
2
4
8
9
Solution
Given that . `x = 3sqrt(2+sqrt3)` It can be simplified as
` x^3 = 2+sqrt3`
`1/ x^3 = 1 /(2+sqrt3)`
We know that rationalization factor for `2+sqrt3` is `2- sqrt3`. We will multiply numerator and denominator of the given expression `1/(2+sqrt3)`by `2-sqrt3`, to get
`1/x^3 = 1/(2+sqrt3 ) xx (2-sqrt3)/(2-sqrt3)`
`= (2-sqrt3)/((2)^2 - (sqrt3)^2)`
`= (2-sqrt3)/(4-3)`
`=2-sqrt3`
Therefore,
`x^3 + 1/x^3 = 2 +sqrt3 +2 - sqrt3`
`= 2+2`
`=4`
APPEARS IN
RELATED QUESTIONS
Prove that:
`(x^a/x^b)^cxx(x^b/x^c)^axx(x^c/x^a)^b=1`
Solve the following equation for x:
`4^(2x)=1/32`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrt2/sqrt3)^5(6/7)^2`
Prove that:
`((0.6)^0-(0.1)^-1)/((3/8)^-1(3/2)^3+((-1)/3)^-1)=(-3)/2`
Find the value of x in the following:
`5^(x-2)xx3^(2x-3)=135`
Solve the following equation:
`3^(x+1)=27xx3^4`
Write the value of \[\left\{ 5( 8^{1/3} + {27}^{1/3} )^3 \right\}^{1/4} . \]
If a, b, c are positive real numbers, then \[\sqrt{a^{- 1} b} \times \sqrt{b^{- 1} c} \times \sqrt{c^{- 1} a}\] is equal to
If x is a positive real number and x2 = 2, then x3 =
If \[2^{- m} \times \frac{1}{2^m} = \frac{1}{4},\] then \[\frac{1}{14}\left\{ ( 4^m )^{1/2} + \left( \frac{1}{5^m} \right)^{- 1} \right\}\] is equal to