Advertisements
Advertisements
Question
The value of \[\sqrt{3 - 2\sqrt{2}}\] is
Options
\[\sqrt{2} - 1\]
\[\sqrt{2} + 1\]
\[\sqrt{3} - \sqrt{2}\]
\[\sqrt{3} + \sqrt{2}\]
Solution
Given that:`sqrt(3 -2sqrt2)` It can be written in the form `(a-b)^2 = a^2+b^2 -2ab` as
`sqrt(3 -2sqrt2) = sqrt(2+1-2 xx 1 xxsqrt2)`
` = sqrt((sqrt2 )^2 + (1)^2 - 2 xx 1 xx sqrt2)`
`= sqrt((sqrt2-1)^2)`
` = sqrt2 - 1.`
APPEARS IN
RELATED QUESTIONS
Simplify the following
`(4ab^2(-5ab^3))/(10a^2b^2)`
Solve the following equation for x:
`7^(2x+3)=1`
Prove that:
`(2^(1/2)xx3^(1/3)xx4^(1/4))/(10^(-1/5)xx5^(3/5))div(3^(4/3)xx5^(-7/5))/(4^(-3/5)xx6)=10`
Write \[\left( 625 \right)^{- 1/4}\] in decimal form.
If (23)2 = 4x, then 3x =
If a, b, c are positive real numbers, then \[\sqrt{a^{- 1} b} \times \sqrt{b^{- 1} c} \times \sqrt{c^{- 1} a}\] is equal to
The value of \[\left\{ 8^{- 4/3} \div 2^{- 2} \right\}^{1/2}\] is
If \[\frac{x}{x^{1 . 5}} = 8 x^{- 1}\] and x > 0, then x =
If \[x + \sqrt{15} = 4,\] then \[x + \frac{1}{x}\] =
Find:-
`125^((-1)/3)`