Advertisements
Advertisements
Question
Simplify the following
`(4ab^2(-5ab^3))/(10a^2b^2)`
Solution
`(4ab^2(-5ab^3))/(10a^2b^2)`
`=(4xxaxxb^2xx(-5)xxaxxb^3)/(10a^2b^2)`
`=(-20xxa^1xxa^1xxb^2xxb^3)/(10a^2b^2)`
`=(-20xxa^(1+1)xxb^(2+3))/(10a^2b^2)`
`=-2xxa^2xxb^5xxa^-2xxb^-2`
`=-2xxa^(2+(-2))xxb^(5+(-2))`
`=-2xxa^0xxb^3`
`=-2b^3`
APPEARS IN
RELATED QUESTIONS
Simplify the following:
`(6(8)^(n+1)+16(2)^(3n-2))/(10(2)^(3n+1)-7(8)^n)`
Solve the following equations for x:
`2^(2x)-2^(x+3)+2^4=0`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrt(x^-3))^5`
Show that:
`1/(1+x^(a-b))+1/(1+x^(b-a))=1`
Solve the following equation:
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
Solve the following equation:
`sqrt(a/b)=(b/a)^(1-2x),` where a and b are distinct primes.
Show that:
`((a+1/b)^mxx(a-1/b)^n)/((b+1/a)^mxx(b-1/a)^n)=(a/b)^(m+n)`
The product of the square root of x with the cube root of x is
The value of \[\left\{ \left( 23 + 2^2 \right)^{2/3} + (140 - 19 )^{1/2} \right\}^2 ,\] is
If \[x + \sqrt{15} = 4,\] then \[x + \frac{1}{x}\] =