Advertisements
Advertisements
Question
Solve the following equations for x:
`2^(2x)-2^(x+3)+2^4=0`
Solution
`2^(2x)-2^(x+3)+2^4=0`
`rArr(2^x)^2-(2^xxx2^3)+(2^2)^2=0`
`rArr(2^x)^2-2xx2^xxx2^2+(2^2)^2=0`
`rArr(2^x-2^2)^2=0`
⇒ 2x - 22 = 0
⇒ 2x = 22
⇒ x = 2
APPEARS IN
RELATED QUESTIONS
Simplify the following
`((x^2y^2)/(a^2b^3))^n`
Prove that:
`(a+b+c)/(a^-1b^-1+b^-1c^-1+c^-1a^-1)=abc`
Assuming that x, y, z are positive real numbers, simplify the following:
`(x^-4/y^-10)^(5/4)`
Simplify:
`root3((343)^-2)`
Show that:
`(x^(1/(a-b)))^(1/(a-c))(x^(1/(b-c)))^(1/(b-a))(x^(1/(c-a)))^(1/(c-b))=1`
Find the value of x in the following:
`2^(x-7)xx5^(x-4)=1250`
For any positive real number x, find the value of \[\left( \frac{x^a}{x^b} \right)^{a + b} \times \left( \frac{x^b}{x^c} \right)^{b + c} \times \left( \frac{x^c}{x^a} \right)^{c + a}\].
The value of m for which \[\left[ \left\{ \left( \frac{1}{7^2} \right)^{- 2} \right\}^{- 1/3} \right]^{1/4} = 7^m ,\] is
The value of 64-1/3 (641/3-642/3), is
Simplify:
`11^(1/2)/11^(1/4)`