Advertisements
Advertisements
प्रश्न
Solve the following equations for x:
`2^(2x)-2^(x+3)+2^4=0`
उत्तर
`2^(2x)-2^(x+3)+2^4=0`
`rArr(2^x)^2-(2^xxx2^3)+(2^2)^2=0`
`rArr(2^x)^2-2xx2^xxx2^2+(2^2)^2=0`
`rArr(2^x-2^2)^2=0`
⇒ 2x - 22 = 0
⇒ 2x = 22
⇒ x = 2
APPEARS IN
संबंधित प्रश्न
Prove that:
`(x^a/x^b)^(a^2+ab+b^2)xx(x^b/x^c)^(b^2+bc+c^2)xx(x^c/x^a)^(c^2+ca+a^2)=1`
Prove that:
`(a+b+c)/(a^-1b^-1+b^-1c^-1+c^-1a^-1)=abc`
Prove that:
`(1/4)^-2-3xx8^(2/3)xx4^0+(9/16)^(-1/2)=16/3`
Find the value of x in the following:
`5^(x-2)xx3^(2x-3)=135`
Find the value of x in the following:
`(root3 4)^(2x+1/2)=1/32`
Find the value of x in the following:
`(13)^(sqrtx)=4^4-3^4-6`
If `5^(3x)=125` and `10^y=0.001,` find x and y.
Solve the following equation:
`3^(x+1)=27xx3^4`
Write the value of \[\left\{ 5( 8^{1/3} + {27}^{1/3} )^3 \right\}^{1/4} . \]
If 9x+2 = 240 + 9x, then x =