Advertisements
Advertisements
प्रश्न
Write the value of \[\left\{ 5( 8^{1/3} + {27}^{1/3} )^3 \right\}^{1/4} . \]
उत्तर
We have to find the value of. `{5(8^(1/3)+27^(1/3))^3}^(1/4)`So,
`{5(8^(1/3)+27^(1/3))^3)}^(1/4) ={5(2^(3^xx1/3) +3^(3xx1/3))^3)}^(1/4)`
`= {5(2^(3^xx1/3)+3^(3^xx1/3))^3}^(1/4)`
=`{5(2+3)^3}^(1/4)`
=`{5xx5^3}^(1/4)`
By using rational exponents `a^mxx a^n = a^(m+n)` we get
`{5(8^(1/3)+27^(1/3))^3}^(1/4)` =`{5^(1+3)}^(1/4)`
`=5^(4xx1/4)`
`=5^(4xx1/4)`
`=5^1`
= 5
Hence the simplified value of `{5(8^(1/3)+27^(1/3))^3}^(1/4)` is 5.
APPEARS IN
संबंधित प्रश्न
If a = 3 and b = -2, find the values of :
aa + bb
Assuming that x, y, z are positive real numbers, simplify the following:
`(x^-4/y^-10)^(5/4)`
Prove that:
`9^(3/2)-3xx5^0-(1/81)^(-1/2)=15`
Prove that:
`(2^(1/2)xx3^(1/3)xx4^(1/4))/(10^(-1/5)xx5^(3/5))div(3^(4/3)xx5^(-7/5))/(4^(-3/5)xx6)=10`
Show that:
`[{x^(a(a-b))/x^(a(a+b))}div{x^(b(b-a))/x^(b(b+a))}]^(a+b)=1`
Find the value of x in the following:
`2^(5x)div2x=root5(2^20)`
If `x = a^(m+n),` `y=a^(n+l)` and `z=a^(l+m),` prove that `x^my^nz^l=x^ny^lz^m`
For any positive real number x, find the value of \[\left( \frac{x^a}{x^b} \right)^{a + b} \times \left( \frac{x^b}{x^c} \right)^{b + c} \times \left( \frac{x^c}{x^a} \right)^{c + a}\].
(256)0.16 × (256)0.09
If \[\sqrt{13 - a\sqrt{10}} = \sqrt{8} + \sqrt{5}, \text { then a } =\]