Advertisements
Advertisements
प्रश्न
Assuming that x, y, z are positive real numbers, simplify the following:
`(x^-4/y^-10)^(5/4)`
उत्तर
We have to simplify the following, assuming that x, y, z are positive real numbers
Given `(x^-4/y^-10)^(5/4)`
`=(x^-4)^(5/4)/(y^-10)^(5/4)`
`=x^(-4xx5/4)/y^(-10xx5/4)`
`=x^-5/y^(-25/2)`
`=y^(25/2)/x^5`
APPEARS IN
संबंधित प्रश्न
Find:-
`9^(3/2)`
Simplify the following
`((4xx10^7)(6xx10^-5))/(8xx10^4)`
If `1176=2^a3^b7^c,` find a, b and c.
Prove that:
`(1/4)^-2-3xx8^(2/3)xx4^0+(9/16)^(-1/2)=16/3`
Prove that:
`(64/125)^(-2/3)+1/(256/625)^(1/4)+(sqrt25/root3 64)=65/16`
Solve the following equation:
`4^(2x)=(root3 16)^(-6/y)=(sqrt8)^2`
For any positive real number x, find the value of \[\left( \frac{x^a}{x^b} \right)^{a + b} \times \left( \frac{x^b}{x^c} \right)^{b + c} \times \left( \frac{x^c}{x^a} \right)^{c + a}\].
Write the value of \[\left\{ 5( 8^{1/3} + {27}^{1/3} )^3 \right\}^{1/4} . \]
When simplified \[( x^{- 1} + y^{- 1} )^{- 1}\] is equal to
If (16)2x+3 =(64)x+3, then 42x-2 =