Advertisements
Advertisements
प्रश्न
Prove that:
`(64/125)^(-2/3)+1/(256/625)^(1/4)+(sqrt25/root3 64)=65/16`
उत्तर
We have to prove that `(64/125)^(-2/3)+1/(256/625)^(1/4)+(sqrt25/root3 64)=65/16`
Let x = `(64/125)^(-2/3)+1/(256/625)^(1/4)+(sqrt25/root3 64)`
`=2^(6xx(-2)/3)/5^(3xx(-2)/3)+1/(2^(8xx1/4)/5^(4xx1/4))+sqrt(5xx5)/root3 (4xx4xx4)`
`=2^-4/5^-2+1/(2^2/5)+5/4`
`=(1/2^4)/(1/5^2)+5/2^2+5/4`
`rArrx=1/16xx25/1+5/4+5/4=65/16`
By taking least common factor we get
`x=(25+20+20)/16=65/16`
Hence, `(64/125)^(-2/3)+1/(256/625)^(1/4)+(sqrt25/root3 64)=65/16`
APPEARS IN
संबंधित प्रश्न
Solve the following equation for x:
`2^(5x+3)=8^(x+3)`
Show that:
`[{x^(a(a-b))/x^(a(a+b))}div{x^(b(b-a))/x^(b(b+a))}]^(a+b)=1`
If `27^x=9/3^x,` find x.
Find the value of x in the following:
`(root3 4)^(2x+1/2)=1/32`
Determine `(8x)^x,`If `9^(x+2)=240+9^x`
If a and b are different positive primes such that
`(a+b)^-1(a^-1+b^-1)=a^xb^y,` find x + y + 2.
The product of the square root of x with the cube root of x is
If \[\sqrt{2^n} = 1024,\] then \[{3^2}^\left( \frac{n}{4} - 4 \right) =\]
Find:-
`125^(1/3)`
Simplify:
`(9^(1/3) xx 27^(-1/2))/(3^(1/6) xx 3^(- 2/3))`