Advertisements
Advertisements
Question
Prove that:
`(64/125)^(-2/3)+1/(256/625)^(1/4)+(sqrt25/root3 64)=65/16`
Solution
We have to prove that `(64/125)^(-2/3)+1/(256/625)^(1/4)+(sqrt25/root3 64)=65/16`
Let x = `(64/125)^(-2/3)+1/(256/625)^(1/4)+(sqrt25/root3 64)`
`=2^(6xx(-2)/3)/5^(3xx(-2)/3)+1/(2^(8xx1/4)/5^(4xx1/4))+sqrt(5xx5)/root3 (4xx4xx4)`
`=2^-4/5^-2+1/(2^2/5)+5/4`
`=(1/2^4)/(1/5^2)+5/2^2+5/4`
`rArrx=1/16xx25/1+5/4+5/4=65/16`
By taking least common factor we get
`x=(25+20+20)/16=65/16`
Hence, `(64/125)^(-2/3)+1/(256/625)^(1/4)+(sqrt25/root3 64)=65/16`
APPEARS IN
RELATED QUESTIONS
If a = 3 and b = -2, find the values of :
ab + ba
Prove that:
`(x^a/x^b)^cxx(x^b/x^c)^axx(x^c/x^a)^b=1`
Solve the following equations for x:
`2^(2x)-2^(x+3)+2^4=0`
Show that:
`{(x^(a-a^-1))^(1/(a-1))}^(a/(a+1))=x`
If a and b are distinct primes such that `root3 (a^6b^-4)=a^xb^(2y),` find x and y.
Write \[\left( \frac{1}{9} \right)^{- 1/2} \times (64 )^{- 1/3}\] as a rational number.
The value of \[\left\{ 8^{- 4/3} \div 2^{- 2} \right\}^{1/2}\] is
If \[\frac{5 - \sqrt{3}}{2 + \sqrt{3}} = x + y\sqrt{3}\] , then
Find:-
`16^(3/4)`
If `a = 2 + sqrt(3)`, then find the value of `a - 1/a`.