Advertisements
Advertisements
Question
If a and b are distinct primes such that `root3 (a^6b^-4)=a^xb^(2y),` find x and y.
Solution
Given `root3 (a^6b^-4)=a^xb^(2y)`
`rArr(a^6b^-4)^(1/3)=a^xb^(2y)`
`rArra^(6xx1/3)b^(-4xx1/3)=a^xb^(2y)`
`rArra^2b^(-4/3)=a^xb^(2y)`
⇒ x = 2 and y = -2/3
APPEARS IN
RELATED QUESTIONS
Prove that:
`(a+b+c)/(a^-1b^-1+b^-1c^-1+c^-1a^-1)=abc`
Solve the following equations for x:
`2^(2x)-2^(x+3)+2^4=0`
Assuming that x, y, z are positive real numbers, simplify the following:
`(x^((-2)/3)y^((-1)/2))^2`
Prove that:
`9^(3/2)-3xx5^0-(1/81)^(-1/2)=15`
Find the value of x in the following:
`(sqrt(3/5))^(x+1)=125/27`
Which of the following is (are) not equal to \[\left\{ \left( \frac{5}{6} \right)^{1/5} \right\}^{- 1/6}\] ?
If a, m, n are positive ingegers, then \[\left\{ \sqrt[m]{\sqrt[n]{a}} \right\}^{mn}\] is equal to
The value of \[\left\{ \left( 23 + 2^2 \right)^{2/3} + (140 - 19 )^{1/2} \right\}^2 ,\] is
\[\frac{5^{n + 2} - 6 \times 5^{n + 1}}{13 \times 5^n - 2 \times 5^{n + 1}}\] is equal to
If \[x = 7 + 4\sqrt{3}\] and xy =1, then \[\frac{1}{x^2} + \frac{1}{y^2} =\]