Advertisements
Advertisements
Question
\[\frac{5^{n + 2} - 6 \times 5^{n + 1}}{13 \times 5^n - 2 \times 5^{n + 1}}\] is equal to
Options
\[\frac{5}{3}\]
\[- \frac{5}{3}\]
\[\frac{3}{5}\]
\[- \frac{3}{5}\]
Solution
We have to simplify `(5^(n+2) - 6xx 5^(n+1))/(13 xx 5^n - 2 xx5^(n+1))`
Taking `5^2` as a common factor we get
`(5^(n+2) - 6xx 5^(n+1))/(13 xx 5^n - 2 xx5^(n+1)) = (5^n(5^2 -6 xx 5^1))/(5^n(13-2 xx 5^1))`
`= (5^n(25-30))/(5^n(13-10))`
` = (-5)/3`
APPEARS IN
RELATED QUESTIONS
Simplify the following:
`(5xx25^(n+1)-25xx5^(2n))/(5xx5^(2n+3)-25^(n+1))`
Prove that:
`(2^(1/2)xx3^(1/3)xx4^(1/4))/(10^(-1/5)xx5^(3/5))div(3^(4/3)xx5^(-7/5))/(4^(-3/5)xx6)=10`
If a and b are distinct primes such that `root3 (a^6b^-4)=a^xb^(2y),` find x and y.
If x-2 = 64, then x1/3+x0 =
The value of \[\left\{ 8^{- 4/3} \div 2^{- 2} \right\}^{1/2}\] is
If 102y = 25, then 10-y equals
If \[\sqrt{5^n} = 125\] then `5nsqrt64`=
If \[\frac{3^{5x} \times {81}^2 \times 6561}{3^{2x}} = 3^7\] then x =
If x= \[\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}\] and y = \[\frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}\] , then x2 + y +y2 =
Find:-
`125^(1/3)`