Advertisements
Advertisements
प्रश्न
\[\frac{5^{n + 2} - 6 \times 5^{n + 1}}{13 \times 5^n - 2 \times 5^{n + 1}}\] is equal to
पर्याय
\[\frac{5}{3}\]
\[- \frac{5}{3}\]
\[\frac{3}{5}\]
\[- \frac{3}{5}\]
उत्तर
We have to simplify `(5^(n+2) - 6xx 5^(n+1))/(13 xx 5^n - 2 xx5^(n+1))`
Taking `5^2` as a common factor we get
`(5^(n+2) - 6xx 5^(n+1))/(13 xx 5^n - 2 xx5^(n+1)) = (5^n(5^2 -6 xx 5^1))/(5^n(13-2 xx 5^1))`
`= (5^n(25-30))/(5^n(13-10))`
` = (-5)/3`
APPEARS IN
संबंधित प्रश्न
Simplify the following:
`(5xx25^(n+1)-25xx5^(2n))/(5xx5^(2n+3)-25^(n+1))`
Solve the following equations for x:
`3^(2x+4)+1=2.3^(x+2)`
Prove that:
`(3^-3xx6^2xxsqrt98)/(5^2xxroot3(1/25)xx(15)^(-4/3)xx3^(1/3))=28sqrt2`
Find the value of x in the following:
`2^(x-7)xx5^(x-4)=1250`
If `3^(x+1)=9^(x-2),` find the value of `2^(1+x)`
If `5^(3x)=125` and `10^y=0.001,` find x and y.
If a and b are different positive primes such that
`((a^-1b^2)/(a^2b^-4))^7div((a^3b^-5)/(a^-2b^3))=a^xb^y,` find x and y.
If `a=x^(m+n)y^l, b=x^(n+l)y^m` and `c=x^(l+m)y^n,` Prove that `a^(m-n)b^(n-l)c^(l-m)=1`
The value of m for which \[\left[ \left\{ \left( \frac{1}{7^2} \right)^{- 2} \right\}^{- 1/3} \right]^{1/4} = 7^m ,\] is
If x = \[\sqrt[3]{2 + \sqrt{3}}\] , then \[x^3 + \frac{1}{x^3} =\]