Advertisements
Advertisements
प्रश्न
The value of m for which \[\left[ \left\{ \left( \frac{1}{7^2} \right)^{- 2} \right\}^{- 1/3} \right]^{1/4} = 7^m ,\] is
पर्याय
\[- \frac{1}{3}\]
\[\frac{1}{4}\]
-3
2
उत्तर
We have to find the value of m for \[\left[ \left\{ \left( \frac{1}{7^2} \right)^{- 2} \right\}^{- 1/3} \right]^{1/4} = 7^m ,\]
⇒ `[{1/(7^(2x-2))}^-1/3]^(1/4) = 7^m`
⇒ `[{1/(7^-4)}^(-1/3)]^(1/4) = 7^m`
⇒ `[{1/(7^(-4x(-1)/3)) }}^(1/4)= 7^m`
⇒ `[{1/(7^(4/3))}]^)1/4 = 7^m`
⇒ `[{1/(7^(4/3 xx1/4))}] = 7^m`
⇒ `[{1/(7^(4/3 xx1/4))}] = 7^m`
⇒ `[1/(7^(1/3))] = 7^m`
By using rational exponents `1/a^n = a^-n`
\[7^\frac{- 1}{3} = 7^m\]
Equating power of exponents we get `- 1/3 = m`
APPEARS IN
संबंधित प्रश्न
Prove that:
`(a^-1+b^-1)^-1=(ab)/(a+b)`
Solve the following equation for x:
`4^(2x)=1/32`
If `a=xy^(p-1), b=xy^(q-1)` and `c=xy^(r-1),` prove that `a^(q-r)b^(r-p)c^(p-q)=1`
Prove that:
`(1/4)^-2-3xx8^(2/3)xx4^0+(9/16)^(-1/2)=16/3`
Solve the following equation:
`3^(x-1)xx5^(2y-3)=225`
The square root of 64 divided by the cube root of 64 is
If g = `t^(2/3) + 4t^(-1/2)`, what is the value of g when t = 64?
If \[\sqrt{2^n} = 1024,\] then \[{3^2}^\left( \frac{n}{4} - 4 \right) =\]
The simplest rationalising factor of \[2\sqrt{5}-\]\[\sqrt{3}\] is
\[\frac{1}{\sqrt{9} - \sqrt{8}}\] is equal to