Advertisements
Advertisements
प्रश्न
If g = `t^(2/3) + 4t^(-1/2)`, what is the value of g when t = 64?
पर्याय
`31/2`
`33/2`
16
`257/16`
उत्तर
`bb(33/2)`
Explanation:
g = `t^(2/3) + 4t^(-1/2)`
= `(64)^(2/3) + 4(64)^(-1/2)`
= `[(64)^(1/3)]^3 + 4 (1/64)^(1/2)`
= `4^2 + 4(1/8)`
= `16 + 1/2 = 38/2`
APPEARS IN
संबंधित प्रश्न
Find:-
`64^(1/2)`
Prove that:
`(x^a/x^b)^cxx(x^b/x^c)^axx(x^c/x^a)^b=1`
Simplify the following:
`(3^nxx9^(n+1))/(3^(n-1)xx9^(n-1))`
Show that:
`(a^(x+1)/a^(y+1))^(x+y)(a^(y+2)/a^(z+2))^(y+z)(a^(z+3)/a^(x+3))^(z+x)=1`
State the quotient law of exponents.
If a, b, c are positive real numbers, then \[\sqrt[5]{3125 a^{10} b^5 c^{10}}\] is equal to
If \[\sqrt{2} = 1 . 414,\] then the value of \[\sqrt{6} - \sqrt{3}\] upto three places of decimal is
The positive square root of \[7 + \sqrt{48}\] is
Find:-
`32^(2/5)`
Find:-
`125^((-1)/3)`