Advertisements
Advertisements
प्रश्न
Find:-
`32^(2/5)`
उत्तर
We can write the given expression as follows
⇒ `32^(2/5) = (2^5)^(2/5)`
On simplifying
⇒ `32^(2/5) = 2^(5 xx 2/5)`
⇒ `32^(2/5) = 2^2`
∴ `32^(2/5) = 4`
APPEARS IN
संबंधित प्रश्न
Find:-
`64^(1/2)`
Simplify the following
`((4xx10^7)(6xx10^-5))/(8xx10^4)`
Prove that:
`((0.6)^0-(0.1)^-1)/((3/8)^-1(3/2)^3+((-1)/3)^-1)=(-3)/2`
Find the value of x in the following:
`(2^3)^4=(2^2)^x`
If a, b, c are positive real numbers, then \[\sqrt{a^{- 1} b} \times \sqrt{b^{- 1} c} \times \sqrt{c^{- 1} a}\] is equal to
If x = 2 and y = 4, then \[\left( \frac{x}{y} \right)^{x - y} + \left( \frac{y}{x} \right)^{y - x} =\]
If g = `t^(2/3) + 4t^(-1/2)`, what is the value of g when t = 64?
The simplest rationalising factor of \[\sqrt[3]{500}\] is
\[\frac{1}{\sqrt{9} - \sqrt{8}}\] is equal to
Find:-
`125^(1/3)`