Advertisements
Advertisements
प्रश्न
If a, b, c are positive real numbers, then \[\sqrt{a^{- 1} b} \times \sqrt{b^{- 1} c} \times \sqrt{c^{- 1} a}\] is equal to
पर्याय
1
abc
\[\sqrt{abc}\]
\[\frac{1}{abc}\]
उत्तर
We have to find the value of `sqrt(a^-1b)xx sqrt (b^-1c) xx sqrt(c^-1 a)` when a, b, c are positive real numbers.
So,
`sqrt(a^-1b)xx sqrt (b^-1c) xx sqrt(c^-1 a) =sqrt(1/a xxb)xx sqrt(1/b xx c) xx sqrt(1/c xx a)`
`sqrt(b/a) xx sqrt (c/b) xx sqrt(a/c)`
Taking square root as common we get
\[\sqrt{a^{- 1} b} \times \sqrt{b^{- 1} c} \times \sqrt{c^{- 1} a} = \sqrt{\frac{b}{a} \times \frac{c}{b} \times \frac{a}{c}}\]
\[\sqrt{a^{- 1} b} \times \sqrt{b^{- 1} c} \times \sqrt{c^{- 1} a} = 1\]
APPEARS IN
संबंधित प्रश्न
Simplify the following
`(2x^-2y^3)^3`
Prove that:
`(a^-1+b^-1)^-1=(ab)/(a+b)`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrt2/sqrt3)^5(6/7)^2`
Show that:
`{(x^(a-a^-1))^(1/(a-1))}^(a/(a+1))=x`
Find the value of x in the following:
`2^(x-7)xx5^(x-4)=1250`
If `3^(x+1)=9^(x-2),` find the value of `2^(1+x)`
If `x = a^(m+n),` `y=a^(n+l)` and `z=a^(l+m),` prove that `x^my^nz^l=x^ny^lz^m`
If 3x-1 = 9 and 4y+2 = 64, what is the value of \[\frac{x}{y}\] ?
If (16)2x+3 =(64)x+3, then 42x-2 =
\[\frac{1}{\sqrt{9} - \sqrt{8}}\] is equal to