Advertisements
Advertisements
प्रश्न
If `x = a^(m+n),` `y=a^(n+l)` and `z=a^(l+m),` prove that `x^my^nz^l=x^ny^lz^m`
उत्तर
Given `x = a^(m+n),` `y=a^(n+l)` and `z=a^(l+m)`
Putting the values ofx, y and z in `x^my^nz^l,` we get
`x^my^nz^l`
`=(a^(m+n))^m(a^(n+l))^n(a^(l+m))^l`
`=(a^(m^2+nm))(a^(n^2+ln))(a^(l^2+lm))`
`=a^(m^2+n^2+l^2+nm+ln+lm)`
Putting the values of x, y and z in `x^ny^lz^m,` we get
`x^ny^lz^m`
`=(a^(m+n))^n(a^(n+l))^l(a^(l+m))^m`
`=(a^(mn+n^2))(a^(nl+l^2))(a^(lm+m^2))`
`=a^(mn+n^2+nl+l^2+lm+m^2)`
So, `x^my^nz^l=x^ny^lz^m`
APPEARS IN
संबंधित प्रश्न
Simplify the following
`(a^(3n-9))^6/(a^(2n-4))`
Prove that:
`(x^a/x^b)^cxx(x^b/x^c)^axx(x^c/x^a)^b=1`
Solve the following equation for x:
`2^(5x+3)=8^(x+3)`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrtx)^((-2)/3)sqrt(y^4)divsqrt(xy^((-1)/2))`
Prove that:
`(3^-3xx6^2xxsqrt98)/(5^2xxroot3(1/25)xx(15)^(-4/3)xx3^(1/3))=28sqrt2`
Find the value of x in the following:
`5^(2x+3)=1`
Solve the following equation:
`4^(2x)=(root3 16)^(-6/y)=(sqrt8)^2`
State the power law of exponents.
If \[8^{x + 1}\] = 64 , what is the value of \[3^{2x + 1}\] ?
The value of \[\sqrt{3 - 2\sqrt{2}}\] is