Advertisements
Advertisements
प्रश्न
Write \[\left( 625 \right)^{- 1/4}\] in decimal form.
उत्तर
We have to write `(625)^(-1/4)`in decimal form. So,
\[\left( 625 \right)^\frac{- 1}{4} = \frac{1}{{625}^\frac{1}{4}}\]
\[ = \left( \frac{1}{\left( 5^4 \right)} \right)^\frac{1}{4}\]
`(625)^(-1/4) = (1 /5)^(4 xx 1/4)`
`=1/5`
= 0.2
Hence the decimal form of `(625)^(-1/4)` is 0.2
APPEARS IN
संबंधित प्रश्न
Simplify:-
`2^(2/3). 2^(1/5)`
Solve the following equations for x:
`3^(2x+4)+1=2.3^(x+2)`
Prove that:
`sqrt(3xx5^-3)divroot3(3^-1)sqrt5xxroot6(3xx5^6)=3/5`
Solve the following equation:
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
If (23)2 = 4x, then 3x =
Which one of the following is not equal to \[\left( \frac{100}{9} \right)^{- 3/2}\]?
If \[\sqrt{5^n} = 125\] then `5nsqrt64`=
If x= \[\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}\] and y = \[\frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}\] , then x2 + y +y2 =
If \[\sqrt{13 - a\sqrt{10}} = \sqrt{8} + \sqrt{5}, \text { then a } =\]
Which of the following is equal to x?