Advertisements
Advertisements
प्रश्न
If \[\sqrt{13 - a\sqrt{10}} = \sqrt{8} + \sqrt{5}, \text { then a } =\]
पर्याय
−5
−6
−4
−2
उत्तर
Given that:`sqrt(13- a sqrt10)= sqrt8 +sqrt5`
We need to find a
The given expression can be simplified by taking square on both sides
`(sqrt(13- a sqrt10)^2)= (sqrt8 +sqrt5)^2`
`13-asqrt10 = (sqrt8)^2 +(sqrt5)^2 + 2xx sqrt8xx sqrt5`
`= 8+ 5 +2sqrt40`
The irrational terms on right side can be factorized such that it of the same form as left side terms.
Hence,
`13 - asqrt10 = 13 +2 sqrt4 sqrt10`
` =13+2xx2xxsqrt10`
`= 13+4sqrt10.`
On comparing rational and irrational terms, we get `a=-4`.
APPEARS IN
संबंधित प्रश्न
Find:-
`9^(3/2)`
Prove that:
`9^(3/2)-3xx5^0-(1/81)^(-1/2)=15`
Show that:
`[{x^(a(a-b))/x^(a(a+b))}div{x^(b(b-a))/x^(b(b+a))}]^(a+b)=1`
Show that:
`{(x^(a-a^-1))^(1/(a-1))}^(a/(a+1))=x`
Simplify:
`(x^(a+b)/x^c)^(a-b)(x^(b+c)/x^a)^(b-c)(x^(c+a)/x^b)^(c-a)`
If `x = a^(m+n),` `y=a^(n+l)` and `z=a^(l+m),` prove that `x^my^nz^l=x^ny^lz^m`
The value of m for which \[\left[ \left\{ \left( \frac{1}{7^2} \right)^{- 2} \right\}^{- 1/3} \right]^{1/4} = 7^m ,\] is
If \[4x - 4 x^{- 1} = 24,\] then (2x)x equals
If \[\frac{2^{m + n}}{2^{n - m}} = 16\], \[\frac{3^p}{3^n} = 81\] and \[a = 2^{1/10}\],than \[\frac{a^{2m + n - p}}{( a^{m - 2n + 2p} )^{- 1}} =\]
Which of the following is equal to x?