Advertisements
Advertisements
प्रश्न
If \[\frac{2^{m + n}}{2^{n - m}} = 16\], \[\frac{3^p}{3^n} = 81\] and \[a = 2^{1/10}\],than \[\frac{a^{2m + n - p}}{( a^{m - 2n + 2p} )^{- 1}} =\]
पर्याय
2
- \[\frac{1}{4}\]
9
- \[\frac{1}{8}\]
उत्तर
Given : `2^(m+n)/2^(n-m) = 16`
\[\frac{3^p}{3^n} = 81\] and and `a-2^(1/10)`
To find : `(a^(2m+n-p))/((a^(m-2n+2p))^-1)`
Find : `2^(m+n)/2^(n-m) = 16`
By using rational components `a^m/a^n = a^(m-n)`We get
`2^(m+n-n+m) = 16`
`2^(m+n-n+m) = 16`
`2^(2m) = 2^4`
By equating rational exponents we get
`2m = 4`
`m = 4/2`
`m=2`
Now, `(a(2m+n-p))/((a^(m-2n+2p))^-1`
\[\left( a^{2m + n - p} \right) . \left( a^{m - 2n + 2p} \right)\] we get
\[= a^{2m + n - p + m - 2n + 2p} \]
\[ = a^{3m - n + p} \]
\[\text { Now putting value of a } = 2^\frac{1}{10}\text { we get,} \]
\[ = 2^\frac{3m - n + p}{10} \]
\[ = 2^\frac{6 - n + p}{10}\]
Also,
\[\frac{3^p}{3^n} = 81\]
\[3^{p - n} = 3^4 \]
On comparing LHS and RHS we get,p - n = 4.
Now,
`(a^(2m+n-p))/(a^(m-2n+2p))^-1`= a3m - n + p
\[= 2^\frac{6 + (p - n)}{10} \]
\[ = 2^\frac{6 + 4}{10} \]
\[ = 2^\frac{10}{10} = 2^1 \]
\[ = 2\]
So, option (a) is the correct answer.
APPEARS IN
संबंधित प्रश्न
Simplify the following
`3(a^4b^3)^10xx5(a^2b^2)^3`
Solve the following equation for x:
`2^(5x+3)=8^(x+3)`
If ax = by = cz and b2 = ac, show that `y=(2zx)/(z+x)`
If `a=x^(m+n)y^l, b=x^(n+l)y^m` and `c=x^(l+m)y^n,` Prove that `a^(m-n)b^(n-l)c^(l-m)=1`
The value of \[\left\{ 8^{- 4/3} \div 2^{- 2} \right\}^{1/2}\] is
The value of \[\left\{ \left( 23 + 2^2 \right)^{2/3} + (140 - 19 )^{1/2} \right\}^2 ,\] is
If o <y <x, which statement must be true?
If 10x = 64, what is the value of \[{10}^\frac{x}{2} + 1 ?\]
If \[\sqrt{2} = 1 . 4142\] then \[\sqrt{\frac{\sqrt{2} - 1}{\sqrt{2} + 1}}\] is equal to
The positive square root of \[7 + \sqrt{48}\] is