Advertisements
Advertisements
प्रश्न
If o <y <x, which statement must be true?
पर्याय
\[\sqrt{x} - \sqrt{y} = \sqrt{x - y}\]
\[\sqrt{x} + \sqrt{x} = \sqrt{2x}\]
\[x\sqrt{y} = y\sqrt{x}\]
\[\sqrt{xy} = \sqrt{x}\sqrt{y}\]
उत्तर
We have to find which statement must be true?
Given `0<y<x,`
Option (a) :
Left hand side:
`sqrtx-sqrty= sqrtx -sqrty`
Right Hand side:
`sqrt(x-y)= sqrt(x-y)`
Left hand side is not equal to right hand side
The statement is wrong.
Option (b) :
`sqrtx +sqrtx = sqrt(2x)`
Left hand side:
`sqrtx +sqrtx = 2sqrtx`
Right Hand side:
`sqrt(2x) = sqrt(2x)`
Left hand side is not equal to right hand side
The statement is wrong.
Option (c) :
`xsqrty = ysqrtx`
Left hand side:
`xsqrty = ysqrtx`
Right Hand side:
`ysqrtx = y sqrtx`
Left hand side is not equal to right hand side
The statement is wrong.
Option (d) :
`sqrt(xy) = sqrtxsqrty`
Left hand side:
`sqrt(xy) = sqrt(xy)`
Right Hand side:
`sqrtxsqrty = sqrtx xx sqrty`
`= sqrt(xy)`
Left hand side is equal to right hand side
The statement is true.
APPEARS IN
संबंधित प्रश्न
Assuming that x, y, z are positive real numbers, simplify the following:
`sqrt(x^3y^-2)`
Show that:
`(a^(x+1)/a^(y+1))^(x+y)(a^(y+2)/a^(z+2))^(y+z)(a^(z+3)/a^(x+3))^(z+x)=1`
If 2x = 3y = 6-z, show that `1/x+1/y+1/z=0`
Find the value of x in the following:
`5^(2x+3)=1`
Find the value of x in the following:
`(sqrt(3/5))^(x+1)=125/27`
For any positive real number x, find the value of \[\left( \frac{x^a}{x^b} \right)^{a + b} \times \left( \frac{x^b}{x^c} \right)^{b + c} \times \left( \frac{x^c}{x^a} \right)^{c + a}\].
If \[8^{x + 1}\] = 64 , what is the value of \[3^{2x + 1}\] ?
If \[\frac{2^{m + n}}{2^{n - m}} = 16\], \[\frac{3^p}{3^n} = 81\] and \[a = 2^{1/10}\],than \[\frac{a^{2m + n - p}}{( a^{m - 2n + 2p} )^{- 1}} =\]
If \[x + \sqrt{15} = 4,\] then \[x + \frac{1}{x}\] =
Find:-
`125^(1/3)`