Advertisements
Advertisements
प्रश्न
If o <y <x, which statement must be true?
विकल्प
\[\sqrt{x} - \sqrt{y} = \sqrt{x - y}\]
\[\sqrt{x} + \sqrt{x} = \sqrt{2x}\]
\[x\sqrt{y} = y\sqrt{x}\]
\[\sqrt{xy} = \sqrt{x}\sqrt{y}\]
उत्तर
We have to find which statement must be true?
Given `0<y<x,`
Option (a) :
Left hand side:
`sqrtx-sqrty= sqrtx -sqrty`
Right Hand side:
`sqrt(x-y)= sqrt(x-y)`
Left hand side is not equal to right hand side
The statement is wrong.
Option (b) :
`sqrtx +sqrtx = sqrt(2x)`
Left hand side:
`sqrtx +sqrtx = 2sqrtx`
Right Hand side:
`sqrt(2x) = sqrt(2x)`
Left hand side is not equal to right hand side
The statement is wrong.
Option (c) :
`xsqrty = ysqrtx`
Left hand side:
`xsqrty = ysqrtx`
Right Hand side:
`ysqrtx = y sqrtx`
Left hand side is not equal to right hand side
The statement is wrong.
Option (d) :
`sqrt(xy) = sqrtxsqrty`
Left hand side:
`sqrt(xy) = sqrt(xy)`
Right Hand side:
`sqrtxsqrty = sqrtx xx sqrty`
`= sqrt(xy)`
Left hand side is equal to right hand side
The statement is true.
APPEARS IN
संबंधित प्रश्न
Prove that:
`(3^-3xx6^2xxsqrt98)/(5^2xxroot3(1/25)xx(15)^(-4/3)xx3^(1/3))=28sqrt2`
Find the value of x in the following:
`2^(5x)div2x=root5(2^20)`
If `5^(3x)=125` and `10^y=0.001,` find x and y.
Solve the following equation:
`4^(2x)=(root3 16)^(-6/y)=(sqrt8)^2`
Solve the following equation:
`8^(x+1)=16^(y+2)` and, `(1/2)^(3+x)=(1/4)^(3y)`
Solve the following equation:
`sqrt(a/b)=(b/a)^(1-2x),` where a and b are distinct primes.
If a and b are different positive primes such that
`(a+b)^-1(a^-1+b^-1)=a^xb^y,` find x + y + 2.
Write \[\left( 625 \right)^{- 1/4}\] in decimal form.
If g = `t^(2/3) + 4t^(-1/2)`, what is the value of g when t = 64?
If \[\sqrt{13 - a\sqrt{10}} = \sqrt{8} + \sqrt{5}, \text { then a } =\]