Advertisements
Advertisements
प्रश्न
Solve the following equation:
`sqrt(a/b)=(b/a)^(1-2x),` where a and b are distinct primes.
उत्तर
`sqrt(a/b)=(b/a)^(1-2x)`
`rArr(a/b)^(1/2)=(a/b)^(-(1-2x))`
`rArr1/2=-(1-2x)`
`rArr1/2=2x - 1`
`rArr1/2+1=2x`
`rArr1/2+(1xx2)/(1xx2)=2x`
`rArr1/2+2/2=2x`
`rArr(1+2)/2=2x`
`rArr3/2=2x`
`rArrx=3/4`
APPEARS IN
संबंधित प्रश्न
Simplify:
`((25)^(3/2)xx(243)^(3/5))/((16)^(5/4)xx(8)^(4/3))`
Show that:
`(3^a/3^b)^(a+b)(3^b/3^c)^(b+c)(3^c/3^a)^(c+a)=1`
If 2x = 3y = 6-z, show that `1/x+1/y+1/z=0`
If 3x = 5y = (75)z, show that `z=(xy)/(2x+y)`
If `3^(4x) = (81)^-1` and `10^(1/y)=0.0001,` find the value of ` 2^(-x+4y)`.
Write the value of \[\left\{ 5( 8^{1/3} + {27}^{1/3} )^3 \right\}^{1/4} . \]
Which one of the following is not equal to \[\left( \sqrt[3]{8} \right)^{- 1/2} ?\]
The value of m for which \[\left[ \left\{ \left( \frac{1}{7^2} \right)^{- 2} \right\}^{- 1/3} \right]^{1/4} = 7^m ,\] is
If \[x = \sqrt{6} + \sqrt{5}\],then \[x^2 + \frac{1}{x^2} - 2 =\]
Find:-
`32^(1/5)`