Advertisements
Advertisements
प्रश्न
Show that:
`(3^a/3^b)^(a+b)(3^b/3^c)^(b+c)(3^c/3^a)^(c+a)=1`
उत्तर
`(3^a/3^b)^(a+b)(3^b/3^c)^(b+c)(3^c/3^a)^(c+a)=1`
LHS = `(3^a/3^b)^(a+b)(3^b/3^c)^(b+c)(3^c/3^a)^(c+a)`
`=(3^(a-b))^(a+b)(3^(b-c))^(b+c)(3^(c-a))^(c+a)`
`=(3^((a-b)(a+b)))(3^((b-c)(b+c)))(3^((c-a)(c+a)))`
`=(3^(a^2-b^2))(3^(b^2-c^2))(3^(c^2-a^2))`
`=3^(a^2-b^2+b^2-c^2+c^2-a^2)`
`=3^0`
= 1
= RHS
APPEARS IN
संबंधित प्रश्न
Find:-
`9^(3/2)`
Simplify the following
`((4xx10^7)(6xx10^-5))/(8xx10^4)`
Simplify the following:
`(5^(n+3)-6xx5^(n+1))/(9xx5^x-2^2xx5^n)`
If `3^(x+1)=9^(x-2),` find the value of `2^(1+x)`
Show that:
`((a+1/b)^mxx(a-1/b)^n)/((b+1/a)^mxx(b-1/a)^n)=(a/b)^(m+n)`
If `a=x^(m+n)y^l, b=x^(n+l)y^m` and `c=x^(l+m)y^n,` Prove that `a^(m-n)b^(n-l)c^(l-m)=1`
If \[\frac{2^{m + n}}{2^{n - m}} = 16\], \[\frac{3^p}{3^n} = 81\] and \[a = 2^{1/10}\],than \[\frac{a^{2m + n - p}}{( a^{m - 2n + 2p} )^{- 1}} =\]
\[\frac{5^{n + 2} - 6 \times 5^{n + 1}}{13 \times 5^n - 2 \times 5^{n + 1}}\] is equal to
The simplest rationalising factor of \[2\sqrt{5}-\]\[\sqrt{3}\] is
Find:-
`125^(1/3)`