Advertisements
Advertisements
प्रश्न
Show that:
`(a^(x+1)/a^(y+1))^(x+y)(a^(y+2)/a^(z+2))^(y+z)(a^(z+3)/a^(x+3))^(z+x)=1`
उत्तर
`(a^(x+1)/a^(y+1))^(x+y)(a^(y+2)/a^(z+2))^(y+z)(a^(z+3)/a^(x+3))^(z+x)=1`
LHS = `(a^(x+1)/a^(y+1))^(x+y)(a^(y+2)/a^(z+2))^(y+z)(a^(z+3)/a^(x+3))^(z+x)`
`=(a^(x+1-y-1))^(x+y)(a^(y+2-z-2))^(y+z)(a^(z+3-x-3))^(z+x)`
`=(a^(x-y))^(x+y)(a^(y-z))^(y+z)(a^(z-x))^(z+x)`
`=(a^((x-y)(x+y)))(a^((y-z)(y+z)))(a^((z-x)(z+x)))`
`=(a^(x^2-y^2))(a^(y^2-z^2))(a^(z^2-x^2))`
`=a^(x^2-y^2+y^2-z^2+z^2-x^2)`
`=a^0`
= 1
= RHS
APPEARS IN
संबंधित प्रश्न
Simplify the following
`(2x^-2y^3)^3`
Simplify the following:
`(5^(n+3)-6xx5^(n+1))/(9xx5^x-2^2xx5^n)`
Show that:
`(x^(a-b))^(a+b)(x^(b-c))^(b+c)(x^(c-a))^(c+a)=1`
Find the value of x in the following:
`5^(2x+3)=1`
If `3^(4x) = (81)^-1` and `10^(1/y)=0.0001,` find the value of ` 2^(-x+4y)`.
Solve the following equation:
`3^(x+1)=27xx3^4`
If a and b are different positive primes such that
`((a^-1b^2)/(a^2b^-4))^7div((a^3b^-5)/(a^-2b^3))=a^xb^y,` find x and y.
The seventh root of x divided by the eighth root of x is
The value of \[\left\{ \left( 23 + 2^2 \right)^{2/3} + (140 - 19 )^{1/2} \right\}^2 ,\] is
The value of 64-1/3 (641/3-642/3), is