Advertisements
Advertisements
प्रश्न
Show that:
`(x^(a-b))^(a+b)(x^(b-c))^(b+c)(x^(c-a))^(c+a)=1`
उत्तर
`(x^(a-b))^(a+b)(x^(b-c))^(b+c)(x^(c-a))^(c+a)=1`
LHS = `(x^(a-b))^(a+b)(x^(b-c))^(b+c)(x^(c-a))^(c+a)`
`=[x^((a-b)(a+b))][x^((b-c)(b+c))][x^((c-a)(c+a))]`
`=x^((a^2-b^2))x^((b^2-c^2))x^((c^2-a^2))`
`=x^(a^2-b^2+b^2-c^2+c^2-a^2)`
`=x^0`
= 1
= RHS
APPEARS IN
संबंधित प्रश्न
Find:-
`64^(1/2)`
Simplify the following
`((x^2y^2)/(a^2b^3))^n`
Prove that:
`(a^-1+b^-1)^-1=(ab)/(a+b)`
Prove that:
`9^(3/2)-3xx5^0-(1/81)^(-1/2)=15`
Solve the following equation:
`3^(x-1)xx5^(2y-3)=225`
The product of the square root of x with the cube root of x is
If \[8^{x + 1}\] = 64 , what is the value of \[3^{2x + 1}\] ?
If 10x = 64, what is the value of \[{10}^\frac{x}{2} + 1 ?\]
If \[\sqrt{2} = 1 . 4142\] then \[\sqrt{\frac{\sqrt{2} - 1}{\sqrt{2} + 1}}\] is equal to
Find:-
`16^(3/4)`