Advertisements
Advertisements
प्रश्न
Prove that:
`(a^-1+b^-1)^-1=(ab)/(a+b)`
उत्तर
Consider the left hand side:
`(a^-1+b^-1)^-1`
`=1/(a^-1+b^-1)`
`=1/(1/a+1/b)`
`=1/((b+a)/(ab))`
`=(ab)/(a+b)`
Therefore left hand side is equal to the right hand side. Hence proved.
APPEARS IN
संबंधित प्रश्न
Simplify the following:
`(5xx25^(n+1)-25xx5^(2n))/(5xx5^(2n+3)-25^(n+1))`
Solve the following equation for x:
`7^(2x+3)=1`
Show that:
`(3^a/3^b)^(a+b)(3^b/3^c)^(b+c)(3^c/3^a)^(c+a)=1`
Find the value of x in the following:
`(13)^(sqrtx)=4^4-3^4-6`
Show that:
`((a+1/b)^mxx(a-1/b)^n)/((b+1/a)^mxx(b-1/a)^n)=(a/b)^(m+n)`
If 3x-1 = 9 and 4y+2 = 64, what is the value of \[\frac{x}{y}\] ?
Which of the following is (are) not equal to \[\left\{ \left( \frac{5}{6} \right)^{1/5} \right\}^{- 1/6}\] ?
The value of 64-1/3 (641/3-642/3), is
The simplest rationalising factor of \[2\sqrt{5}-\]\[\sqrt{3}\] is
Simplify:
`(1^3 + 2^3 + 3^3)^(1/2)`