Advertisements
Advertisements
प्रश्न
Simplify the following:
`(5xx25^(n+1)-25xx5^(2n))/(5xx5^(2n+3)-25^(n+1))`
उत्तर
`(5xx25^(n+1)-25xx5^(2n))/(5xx5^(2n+3)-25^(n+1))`
`=(5xx(5^2)^(n+1)-(5^2)xx5^(2n))/(5xx5^(2n+3)-(5^2)^(n+1))`
`=(5xx(5^(2n+2))-(5^2)xx5^(2n))/(5xx5^(2n+3)-5^(2n+2))`
`=(5^(1+2n+2)-5^(2+2n))/(5^(1+2n+3)-5^(2n+2))`
`=(5^(2+2n)(5-1))/(5^(2+2n)(5^2-1))`
`=(5-1)/(5^2-1)`
`=4/24`
`=1/6`
APPEARS IN
संबंधित प्रश्न
Prove that:
`(x^a/x^b)^(a^2+ab+b^2)xx(x^b/x^c)^(b^2+bc+c^2)xx(x^c/x^a)^(c^2+ca+a^2)=1`
Simplify the following:
`(6(8)^(n+1)+16(2)^(3n-2))/(10(2)^(3n+1)-7(8)^n)`
If `x=2^(1/3)+2^(2/3),` Show that x3 - 6x = 6
If `3^(4x) = (81)^-1` and `10^(1/y)=0.0001,` find the value of ` 2^(-x+4y)`.
If a and b are different positive primes such that
`((a^-1b^2)/(a^2b^-4))^7div((a^3b^-5)/(a^-2b^3))=a^xb^y,` find x and y.
Write the value of \[\left\{ 5( 8^{1/3} + {27}^{1/3} )^3 \right\}^{1/4} . \]
If x is a positive real number and x2 = 2, then x3 =
If (16)2x+3 =(64)x+3, then 42x-2 =
If \[2^{- m} \times \frac{1}{2^m} = \frac{1}{4},\] then \[\frac{1}{14}\left\{ ( 4^m )^{1/2} + \left( \frac{1}{5^m} \right)^{- 1} \right\}\] is equal to
If x = \[\sqrt[3]{2 + \sqrt{3}}\] , then \[x^3 + \frac{1}{x^3} =\]