Advertisements
Advertisements
प्रश्न
If `x=2^(1/3)+2^(2/3),` Show that x3 - 6x = 6
उत्तर
x3 - 6x = 6
`x=2^(1/3)+2^(2/3)`
Putting cube on both the sides, we get,
`x^3=(2^(1/3)+2^(2/3))^3`
As we know, `(a+b)^3=a^3+b^3+3ab(a+b)`
`x^3=(2^(1/3))^3+(2^(2/3))^3+3(2^(1/3))(2^(2/3))(2^(1/3)+2^(2/3))`
`x^3=(2^(1/3))^3+(2^(2/3))^3+3(2^(1/3+2/3))(x)`
`x^3=(2^(3/3))+(2^(6/3))+3(2)(x)`
`x^3=2^1+2^2+3(2)(x)`
`x^3=2+4+6x`
`x^3=6+6x`
`x^3-6x=6`
APPEARS IN
संबंधित प्रश्न
Find:-
`64^(1/2)`
Solve the following equation for x:
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
Simplify:
`((5^-1xx7^2)/(5^2xx7^-4))^(7/2)xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)`
Show that:
`(a^(x+1)/a^(y+1))^(x+y)(a^(y+2)/a^(z+2))^(y+z)(a^(z+3)/a^(x+3))^(z+x)=1`
Solve the following equation:
`sqrt(a/b)=(b/a)^(1-2x),` where a and b are distinct primes.
If \[\frac{3^{5x} \times {81}^2 \times 6561}{3^{2x}} = 3^7\] then x =
If 10x = 64, what is the value of \[{10}^\frac{x}{2} + 1 ?\]
If \[x + \sqrt{15} = 4,\] then \[x + \frac{1}{x}\] =
If \[\sqrt{2} = 1 . 414,\] then the value of \[\sqrt{6} - \sqrt{3}\] upto three places of decimal is
Find:-
`32^(2/5)`