Advertisements
Advertisements
प्रश्न
If \[\frac{3^{5x} \times {81}^2 \times 6561}{3^{2x}} = 3^7\] then x =
विकल्प
3
-3
\[\frac{1}{3}\]
\[- \frac{1}{3}\]
उत्तर
We have to find the value of x provided`(3^(5x )xx 81^2 xx 6561)/(3^2x) = 3^7`
So,
`(3^(5x)xx 3^(4xx2) xx 3^8)/3^(2x) = 3^7`
By using law of rational exponents we get
`3^(5x +8 +8-2x)= 3^7`
By equating exponents we get
`5x +8 +8 -2x =7`
` 3x +16 = 7`
`3x = 7-16`
`3x=-9`
`x=(-9)/3`
`x=-3`
APPEARS IN
संबंधित प्रश्न
Simplify:-
`2^(2/3). 2^(1/5)`
Simplify the following:
`(6(8)^(n+1)+16(2)^(3n-2))/(10(2)^(3n+1)-7(8)^n)`
Solve the following equation for x:
`2^(x+1)=4^(x-3)`
If `x=2^(1/3)+2^(2/3),` Show that x3 - 6x = 6
Solve the following equation:
`3^(x-1)xx5^(2y-3)=225`
Solve the following equation:
`sqrt(a/b)=(b/a)^(1-2x),` where a and b are distinct primes.
If a and b are distinct primes such that `root3 (a^6b^-4)=a^xb^(2y),` find x and y.
(256)0.16 × (256)0.09
Find:-
`125^((-1)/3)`
Simplify:
`(3/5)^4 (8/5)^-12 (32/5)^6`