Advertisements
Advertisements
Question
If \[\frac{3^{5x} \times {81}^2 \times 6561}{3^{2x}} = 3^7\] then x =
Options
3
-3
\[\frac{1}{3}\]
\[- \frac{1}{3}\]
Solution
We have to find the value of x provided`(3^(5x )xx 81^2 xx 6561)/(3^2x) = 3^7`
So,
`(3^(5x)xx 3^(4xx2) xx 3^8)/3^(2x) = 3^7`
By using law of rational exponents we get
`3^(5x +8 +8-2x)= 3^7`
By equating exponents we get
`5x +8 +8 -2x =7`
` 3x +16 = 7`
`3x = 7-16`
`3x=-9`
`x=(-9)/3`
`x=-3`
APPEARS IN
RELATED QUESTIONS
Simplify the following
`(2x^-2y^3)^3`
Simplify:
`((5^-1xx7^2)/(5^2xx7^-4))^(7/2)xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)`
Show that:
`[{x^(a(a-b))/x^(a(a+b))}div{x^(b(b-a))/x^(b(b+a))}]^(a+b)=1`
Solve the following equation:
`3^(x-1)xx5^(2y-3)=225`
Write the value of \[\left\{ 5( 8^{1/3} + {27}^{1/3} )^3 \right\}^{1/4} . \]
Simplify \[\left[ \left\{ \left( 625 \right)^{- 1/2} \right\}^{- 1/4} \right]^2\]
The value of \[\left\{ 8^{- 4/3} \div 2^{- 2} \right\}^{1/2}\] is
If \[\sqrt{2} = 1 . 414,\] then the value of \[\sqrt{6} - \sqrt{3}\] upto three places of decimal is
The positive square root of \[7 + \sqrt{48}\] is
Find:-
`125^(1/3)`