English

Simplify: `((5^-1xx7^2)/(5^2xx7^-4))^(7/2)Xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)` - Mathematics

Advertisements
Advertisements

Question

Simplify:

`((5^-1xx7^2)/(5^2xx7^-4))^(7/2)xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)`

Solution

Given `((5^-1xx7^2)/(5^2xx7^-4))^(7/2)xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)`

`((5^-1xx7^2)/(5^2xx7^-4))^(7/2)xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)=((5^(-1xx7/2)xx7^(2xx7/2))/(5^(2xx7/2)xx7^(-4xx7/2)))xx((5^(-2xx(-5)/2)xx7^(3xx(-5)/2))/(5^(3xx(-5)/2)xx7^(-5xx(-5)/2)))`

`rArr((5^-1xx7^2)/(5^2xx7^-4))^(7/2)xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)=(5^((-7)/2)xx7^7)/(5^7xx7^-14)xx(5^5xx7^((-15)/2))/(5^((-15)/2)xx7^(25/2))`

By using the law of rational exponents `a^m/a^n=a^(m-n)` we have

`rArr((5^-1xx7^2)/(5^2xx7^-4))^(7/2)xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)=(5^((-7)/2)xx7^7)/(5^7xx7^-14)xx(5^5xx7^((-15)/2))/(5^((-15)/2)xx7^(25/2))`

`=5^((-7)/2-7)xx7^(7+14)xx5^(5+15/2)xx7^(-15/2-25/2)`

`=5^((-7)/2-14/2)xx7^21xx5^(10/2+15/2)xx7^(-40/2)`

`=5^(-7/2-14/2+10/2+15/2)xx7^(21-40/2)`

`=5^((-7-14+10+15)/2)xx7^((42-40)/2)`

`=5^(4/2)xx7^(2/2)`

`=5^2xx7^1`

`=25xx7`

= 175

Hence the value of `((5^-1xx7^2)/(5^2xx7^-4))^(7/2)xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)` is 175

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Exponents of Real Numbers - Exercise 2.2 [Page 24]

APPEARS IN

RD Sharma Mathematics [English] Class 9
Chapter 2 Exponents of Real Numbers
Exercise 2.2 | Q 2.7 | Page 24

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×