Advertisements
Advertisements
Question
Simplify:
`((5^-1xx7^2)/(5^2xx7^-4))^(7/2)xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)`
Solution
Given `((5^-1xx7^2)/(5^2xx7^-4))^(7/2)xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)`
`((5^-1xx7^2)/(5^2xx7^-4))^(7/2)xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)=((5^(-1xx7/2)xx7^(2xx7/2))/(5^(2xx7/2)xx7^(-4xx7/2)))xx((5^(-2xx(-5)/2)xx7^(3xx(-5)/2))/(5^(3xx(-5)/2)xx7^(-5xx(-5)/2)))`
`rArr((5^-1xx7^2)/(5^2xx7^-4))^(7/2)xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)=(5^((-7)/2)xx7^7)/(5^7xx7^-14)xx(5^5xx7^((-15)/2))/(5^((-15)/2)xx7^(25/2))`
By using the law of rational exponents `a^m/a^n=a^(m-n)` we have
`rArr((5^-1xx7^2)/(5^2xx7^-4))^(7/2)xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)=(5^((-7)/2)xx7^7)/(5^7xx7^-14)xx(5^5xx7^((-15)/2))/(5^((-15)/2)xx7^(25/2))`
`=5^((-7)/2-7)xx7^(7+14)xx5^(5+15/2)xx7^(-15/2-25/2)`
`=5^((-7)/2-14/2)xx7^21xx5^(10/2+15/2)xx7^(-40/2)`
`=5^(-7/2-14/2+10/2+15/2)xx7^(21-40/2)`
`=5^((-7-14+10+15)/2)xx7^((42-40)/2)`
`=5^(4/2)xx7^(2/2)`
`=5^2xx7^1`
`=25xx7`
= 175
Hence the value of `((5^-1xx7^2)/(5^2xx7^-4))^(7/2)xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)` is 175
APPEARS IN
RELATED QUESTIONS
Prove that:
`(x^a/x^b)^cxx(x^b/x^c)^axx(x^c/x^a)^b=1`
Prove that:
`(a+b+c)/(a^-1b^-1+b^-1c^-1+c^-1a^-1)=abc`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrtx)^((-2)/3)sqrt(y^4)divsqrt(xy^((-1)/2))`
Find the value of x in the following:
`(root3 4)^(2x+1/2)=1/32`
Solve the following equation:
`8^(x+1)=16^(y+2)` and, `(1/2)^(3+x)=(1/4)^(3y)`
State the product law of exponents.
For any positive real number x, find the value of \[\left( \frac{x^a}{x^b} \right)^{a + b} \times \left( \frac{x^b}{x^c} \right)^{b + c} \times \left( \frac{x^c}{x^a} \right)^{c + a}\].
(256)0.16 × (256)0.09
If (16)2x+3 =(64)x+3, then 42x-2 =
The positive square root of \[7 + \sqrt{48}\] is