Advertisements
Advertisements
Question
If (16)2x+3 =(64)x+3, then 42x-2 =
Options
64
256
32
512
Solution
We have to find the value of`4^(2x -2)`provided `(16)^(2x +3) = (64)^(x+3)`
So,
`(16)^(2x +3) = (64)^(x+3)`
`(2^4)^(2x +3) = (2^6)^(x+3)`
`2^(8x +12) = 2^(6x+18)`
Equating the power of exponents we get
`8x +12 = 6x +18`
`8x - 6x = 18 -12`
`2x = 6`
`x = 6/2`
`x=3`
The value of `4^(2x-2)` is
` = 4^(2x-2)`
`4^(2 xx 3- 2)`
`4^(6-2)`
`4^4`
= 256
APPEARS IN
RELATED QUESTIONS
Prove that:
`(x^a/x^b)^(a^2+ab+b^2)xx(x^b/x^c)^(b^2+bc+c^2)xx(x^c/x^a)^(c^2+ca+a^2)=1`
Simplify the following:
`(6(8)^(n+1)+16(2)^(3n-2))/(10(2)^(3n+1)-7(8)^n)`
Solve the following equations for x:
`2^(2x)-2^(x+3)+2^4=0`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrt2/sqrt3)^5(6/7)^2`
Simplify:
`(16^(-1/5))^(5/2)`
Show that:
`(3^a/3^b)^(a+b)(3^b/3^c)^(b+c)(3^c/3^a)^(c+a)=1`
If o <y <x, which statement must be true?
Find:-
`32^(2/5)`
Find:-
`16^(3/4)`
Simplify:
`(3/5)^4 (8/5)^-12 (32/5)^6`