Advertisements
Advertisements
Question
Prove that:
`(x^a/x^b)^(a^2+ab+b^2)xx(x^b/x^c)^(b^2+bc+c^2)xx(x^c/x^a)^(c^2+ca+a^2)=1`
Solution
Consider the left hand side:
`(x^a/x^b)^(a^2+ab+b^2)xx(x^b/x^c)^(b^2+bc+c^2)xx(x^c/x^a)^(c^2+ca+a^2)`
`=x^(a(a^2+ab+b^2))/x^(b(a^2+ab+b^2))xxx^(b(b^2+bc+c^2))/x^(c(b^2+bc+c^2))xxx^(c(c^2+ca+a^2))/x^(a(c^2+ca+a^2))`
`=x^(a(a^2+ab+b^2)-b(a^2+ab+b^2))xxx^(b(b^2+bc+c^2)-c(b^2+bc+c^2))xxx^(c(c^2+ca+a^2)-a(c^2+ca+a^2))`
`=x^((a-b)(a^2+ab+b^2))xxx^((b-c)(b^2+bc+c^2))xxx^((c-a)(c^2+ca+a^2))`
`=x^((a^3-b^3))xxx((b^3-c^3))xxx^((c^3-a^3))`
`=x^((a^3-b^3+b^3-c^3+c^3-a^3))`
`=x^0`
= 1
Left hand side is equal to right hand side.
Hence proved.
APPEARS IN
RELATED QUESTIONS
Simplify the following
`((x^2y^2)/(a^2b^3))^n`
Prove that:
`(a^-1+b^-1)^-1=(ab)/(a+b)`
If 3x = 5y = (75)z, show that `z=(xy)/(2x+y)`
Determine `(8x)^x,`If `9^(x+2)=240+9^x`
If `3^(x+1)=9^(x-2),` find the value of `2^(1+x)`
If 10x = 64, what is the value of \[{10}^\frac{x}{2} + 1 ?\]
The simplest rationalising factor of \[2\sqrt{5}-\]\[\sqrt{3}\] is
The positive square root of \[7 + \sqrt{48}\] is
Find:-
`32^(1/5)`
Simplify:-
`(1/3^3)^7`